
Bridging Linear to Graph-based Alignment with Whole Genome Population 
Reference Graphs 

Recently, several attempts are devoted into building comprehensive catalogues of known genomic variants. However, read 
alignment approaches that efficiently utilize them are scarce. Since the catalogues contain hundreds of alleles which in general 
share most of their sequences except where the instant variations appear, that makes a graph of these alleles a reasonable and 
efficient representation of the data. Unfortunately, the lack of efficient implementations and algorithms for graph-based 
alignment makes graph-based approaches computationally expensive for practical application. 

Our approach takes advantage of graph representation in obtaining prominent levels of data compressions, and efficiently 
linearizes the variants graph by sacrificing a portion of the compression ratio. Our model for linearizing the variants graph depends 
on our previous work in transcriptome segmentation for RNAseq. For each gene of interest, we start from the multiple sequence 
alignment (MSA) of the individual alleles (which can be already provided in the catalogue or derived from VCF files). Then we use 
Yanagi1 to generate a set of maximal L-disjoint segments representing the linearized MSA graph (Figure 1). The segments library 
is then used by any alt-aware linear alignment tool. 

The advantage of using our approach over the standard alt-aware aligners that uses a reference of the genome sequence 
appended by the population haplotypes is that segments sequences are highly compressed which is space efficient and speeds 
up the alignment process (Table 1). On the other hand, our approach is potentially flexible such that the generated segments can 
be used with most linear aligners rather than being limited to a specific graph model. Moreover, it avoids the expensive 
computational demands of aligning over graphs.  

As a proof of concept, we test our approach on IPD-IMGT/HLA database to study six class I and class II HLA genes2 with significant 
medical importance. In addition to testing using graph aligners (HISAT-genotype3), linear aligners (BWA-MEM), and linear aligners 
with segments (BWA-MEM), we also included a test for using fast and lightweight RNAseq aligners (RapMap) to examine the 
possibility of using fast RNAseq aligners for the task of read extraction. We simulated three datasets simulating three scenarios: 
1) ClassI-Easy: reads are simulated from HLA class I alleles that are not very different from the reference genome, 2) ClassI-Hard: 
uses HLA class I alleles that are different from the reference, and 3) ClassII-Hard: uses HLA class II alleles that are much different 
from the reference. Preliminary results (Table 2) showed that the more divergent the samples are, the harder for linear aligners 
to correctly align reads. However, assisting linear aligners with the population segments can achieve comparable results to graph 
aligners without compromising the space and computational requirements (Table 3). Although RNAseq aligners with the 
reference alone performed the worst, adding segments elevated its performance back. 
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Figure 1: Illustrative examples for our segmentation model in two steps. (Top) 
Construct a flattened MSA graph of the gene's alleles. (Bottom) Create maximal 
L-disjoint segments of the population graph using Yanagi. 

Table 1: Genome library size for the six HLA genes. In case of graph, number of 
bases is counted as the bases sum of the graph nodes. 

Table 2: Number of correctly aligned reads from simulated reads using: HISAT-
genotype (graph aligner), BWA-MEM (linear alt-aware aligner), and RapMap 
(RNAseq lightweight aligner). In case of both BWA-MEM and RapMap, results 
are shown either when using only the reference genome or the reference 
combined with yanagi's segments for the six HLA genes. 

Table 3: Running time for alignment of real sample NA12878. 

4 alleles (A1, A2, A3, A4) 
(-) same as the first allele 
(.) indel 


