Bridging Linear to Graph Alignment for Whole Genome Population Reference

Mohamed Gunady, Steve Mount, Hector Bravo, Sangtae Kim

Department of Computer Science

University of Maryland – College Park

- Whole Genome Population Reference
 - A challenge handling population diversity

1000 Genomes Project

- Some genes are highly polymorphic
 - E.g. Human Leukocyte Antigen (HLA) system
 - Regulates the human immune system, so of significant medical importance
- Alignment with reference only, can miss significant amount of reads originating from HLA genes
 A*01:01:01:01

- Projects providing catalogs of known genomic variants, e.g.
 - IPD-IMGT/HLA Database
 - 1000 Genomes Project
- IPD-IMGT/HLA Database
 - Rapidly growing, provides 18,363 allele sequences for public access

Two directions to incorporate alleles into alignment

Alt-aware Aligners

e.g. BWA-MEM

Pros:

- Literature and tools well established
- Relatively fast and less expensive

Cons:

- Duplicates major portion of sequences
- Causes ambiguity assigning multi-mapped reads
- No homology relationship between sequences

Graph Aligners

e.g. HISAT-genotype

Pros:

- Shared sequences represented once
- Preserves structure of the alternative alleles

Cons:

- Graph-based aligners are not mature yet
- Current implementations are computationally expensive

Our Approach Population Graph Segmentation

Population Graph Segmentation

Question:

Do we need a Whole-Genome (WG) Population Reference Graph?

Can we preserve graph's advantages while maintaining linear approaches speed and flexibility?

Population Graph Segmentation

- Method Outlines:
 - 1. Build population genome graph
 - 2. Linearize the graph into set of segments
 - 3. Use segments as reference for alignment

Population Graph Segmentation

1. Build population genome graph

(A)	A1:	ATC	GAG	GTC	ACC		ATC	GAG	G	.TC	ACC
(A)	A2:	ATG	ACT	GAG	CTC	ACC	G	ACT	-AG	C	
Alleles MSA	A3:	ATC	GAG	GTG	TCC	TT			-TG		CTT
	A4:	ATC	GAG	GCT	CAC	C				C	

Population Graph Segmentation

2. Linearize the graph into set of segments

Adapt our transcriptome segmentation approach (Yanagi*)

* Gunady, M.K., Cornwell, S., Mount, S.M., Bravo, H.C.: Yanagi: Transcript Segment Library Construction for RNA-Seq Quantication. (WABI 2017)

Population Graph Segmentation

3. Use gene segments as its reference for alignment

Experiments

HLA Class I and Class II genes

HLA Segments Analysis

• HLA Segments (L=150)

[/] University of Maryland

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

HLA Reads Extraction

Simulated Data

- 10 Simulated samples of combining reads simulated from
 - 6 HLA genes (-A, -B, -C) and (-DQA1, -DQB1, -DRB1)
 - Non HLA genes
- Per sample, per HLA gene: Two randomly selected alleles were used to simulated reads
 - Paired-End
 - Length 150bp
 - Average coverage of x40
- A sample contains ~56k HLA reads and 2M non-HLA reads

HLA Reads Extraction

• Simulation Results

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

University of Maryland

HLA Reads Extraction

- Real Data Running Time
 - Sample NA12878
 - (24 threads on Dual E5-2690 2.90GHz)

	HISAT-genotype	BWA-MEM	RapMap
	(Graph)	(Ref+Segs)	(Ref+Segs)
Running Time	20 hours	8 hours	2 hours

Summary

• We introduced an approach of linearizing population haplotypes graph using Yanagi's segmentation.

- Linear aligners with allele segments can achieve graph aligners' performance, while avoiding the expensive computational overhead of aligning over graphs.
- Yanagi's approach opens the door for bridging the gap between linear and graph representations of catalogs of sequences in different domains.

Future Extensions

- Experiments on other polymorphic genes
 - E.g. selected genes from 1000 Genomes Project

• Handle complex repeats

• Handle complex Structural Variants

Acknowledgments

- UMD Team
 - Mohamed Gunady
 - Hector Bravo
 - Stephen Mount

- Illumina Team
 - Sangtae Kim
 - Chris Sanders

VERSITL

56

Thank you!

Questions?

See Poster A-148 Contact: mgunady@cs.umd.edu Yanagi Github: https://github.com/mgunady/yanagi