Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

Mohamed Gunady, Steffen Cornwell, Stephen Mount, Hector Bravo

Department of Computer Science

University of Maryland – College Park

Motivation

- Challenges with Transcript-level Quantification, e.g.
 - 95% of human genes with multiple exons undergo Alternative Splicing (AS)^[1]

- Ambiguity due to multi-mapped reads
 - Usually resolved using probabilistic models like EM

Motivation

- Challenges with Transcript-level Quantification, e.g.
 - Considering local splicing variations leads to a combinatorial number of transcripts.^[2,3]
 - Standard Annotations list only a minimal subset

 Short-read sequencing does not provide information for correlation between distant splicing events.^[4]

Motivation

- Our Vision:
 - Eliminate multi-mapping trivially caused by the significant share of genomic regions.
 - Building sufficient statistics describing individual events.
 - Independently from the estimation of transcript abundances.
 - Utilize the graph representation of the transcriptome.
 - Without building a special graph-based aligners.

Our Approach Transcriptome Segmentation

- Idea Overview:
 - Segment the transcriptome into a set of disjoint regions.
 - Without losing any possible transcriptome sub-sequences.
 - I.e. Linearizing the splice graph
 - Then use the generated segments as a reference instead of the transcriptome.

• A Segment:

seg(Exs, loc, w)

- Segments are *L*-Disjoint width[overlap(seg_i, seg_j)] < L; $i \neq j$
- L corresponds to the read length
- No read of length at least *L* can map to both segments
 - Ignoring sequencing errors and paralogs for now!

- Generating Segments:
 - Naïve Approach

~30% of exons in UCSC hg38 are shorter than 100bp

- Generating Segments:
 - Yanagi's Approach

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

• Segments Graph

Yanagi-based Quantification Workflow

Experiments Segments Analysis

C

В

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

В

С

Segments Analysis

Segments Length

Segments Analysis

• Number of Segments

Use Case: Alt. Splicing Quantification

Differential Exon Skipping

University of Maryland

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

Differential Exon Skipping

- Synthetic Data:^[5]
 - 2 conditions, 3 replicas each.
 - Simulated reads are based on real RNA-Seq data.
 - For 1000 genes with at least two transcripts.
 - Transcription levels of the most abundant two transcripts are switched across conditions.
- Differential Analysis:
 - Exon Skipping events.
 - Linear Model based on the segment counts.
 - Using Limma-Voom.

Differential Exon Skipping

ROC plots:

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

Use Case: Linearized Population Reference Graph

Aligning Over Genomic Variants for WGS

Background

- Several databases of Genomic Variants
 - Rapidly-growing, public archives.
 - E.g. IPD-IMGT/HLA Database currently has 17,344 allele sequences.

illumına[:]

Background

• In principle, Graphs are reasonable representation.

For Research Use Only. Not for use in diagnostic procedures.

Yanagi + Genomic Variants

- Project Variants Graphs into Splice Graphs.
 - Start from Multi-Sequence Alignment (MSA) of gene alleles

🛇 University of Maryland

For Research Use Only. Not for use in diagnostic procedures.

illumina

Yanagi + Genomic Variants

- Preliminary Results: Number of Aligned Reads •
 - Simulated reads from 6 HLA genes

Dataset	Total Reads	HISAT- genotype	HISAT- genotype bwa-mem		RapMap		
		(WG Graph)	Ref	Ref+Segs	Ref	Ref+Segs	
ClassIEasy	6,000	5,900	6,000	6,000	4,163	5,990	
ClassIHard	6,000	5,966	5,797	6,000	3,553	5,990	
ClassIIHard	14,000	13,844	12,232	13,997	7,628	13,975	
ersity of Maryland For Research Use Only. Not for use in diagnostic procedures.							llumi

Jniversity of Maryland

For Research Use Only. Not for use in diagnostic procedures.

Summary

• Yanagi perform a transcriptome segmentation into *L*-disjoint segments.

• Introduces fine-grained counts as statistics for DE analysis.

- Flexible approach that can be used in different use cases:
 - Alternative Splicing Quantification
 - Variant Calling

Future Extensions

- Further Analysis, e.g.
 - Experiments on Real Data
 - Comparison with other tools, e.g. SUPPA2 for AS
 - Detailed analysis on multi-mapped reads
- Discovering unannotated transcripts
- Handling paralogs and intersecting genes
- Handling complex repeats and structural variants

Acknowledgments

- UMD Supervisors
 - Hector Bravo
 - Stephen Mount

- Illumina
 - Sangtae Kim
 - Chris Sanders

- This work was partially supported by:
 - National Science Foundation (NSF)
 - National Institutes of Health (NIH)

illumına^{*}

References

- Jorge Vaquero-Garcia, Alejandro Barrera, Matthew R. Gazzara, Juan Gonzalez-Vallinas, Nicholas F. Lahens, John B. Hogenesch, Kristen W. Lynch, Yoseph Barash, and Juan Valcárcel. A new view of transcriptome complexity and regulation through the lens of local splicing variations. *eLife*, 5:e11752+, February 2016.
- 2. S Lawrence Zipursky, Woj M Wojtowicz, and Daisuke Hattori. Got diversity? wiring the fly brain with dscam. *Trends in biochemical sciences*, 31(10):581–588, 2006.
- Brian J Haas, Arthur L Delcher, Stephen M Mount, Jennifer RWortman, Roger K Smith Jr, Linda I Hannick, Rama Maiti, Catherine M Ronning, Douglas B Rusch, Christopher D Town, et al. Improving the arabidopsis genome annotation using maximal transcript alignment assemblies. *Nucleic acids research*, 31(19):5654–5666, 2003.
- Hagen Tilgner, Fereshteh Jahanbani, Tim Blauwkamp, Ali Moshrefi, Erich Jaeger, Feng Chen, Itamar Harel, Carlos D Bustamante, Morten Rasmussen, and Michael P Snyder. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. *Nature biotechnology*, 33(7):736–742, 2015.
- 5. Charlotte Soneson, Katarina L Matthes, Malgorzata Nowicka, CharityWLaw, and Mark D Robinson. Isoform prefiltering improves performance of count-based methods for analysis of differential transcript usage. *Genome biology*, 2016.

Thank you!

Questions?

