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Yanagi?
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Motivation

• Challenges with Transcript-level Quantification, e.g.
– 95% of human genes with multiple exons undergo Alternative Splicing 

(AS)[1]

– Ambiguity due to multi-mapped reads
• Usually resolved using probabilistic models like EM
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Motivation

• Challenges with Transcript-level Quantification, e.g.
– Considering local splicing variations leads to a combinatorial number 

of transcripts.[2,3]

• Standard Annotations list only a minimal subset

– Short-read sequencing does not provide information for correlation 

between distant splicing events.[4]

University of Maryland



Motivation

• Our Vision:
– Eliminate multi-mapping trivially caused by the significant share of 

genomic regions.

– Building sufficient statistics describing individual events.
• Independently from the estimation of transcript abundances.

– Utilize the graph representation of the transcriptome.
• Without building a special graph-based aligners.
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Transcriptome Segmentation
Our Approach



Yanagi’s Approach

• Idea Overview:
– Segment the transcriptome into a set of disjoint regions.

– Without losing any possible transcriptome sub-sequences.

• I.e. Linearizing the splice graph

– Then use the generated segments as a reference instead of the 
transcriptome.
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Yanagi’s Approach

• A Segment:
𝑠𝑒𝑔(𝐸𝑥𝑠, 𝑙𝑜𝑐, 𝑤)

• Segments are L-Disjoint
𝑤𝑖𝑑𝑡ℎ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑠𝑒𝑔𝑖 , 𝑠𝑒𝑔𝑗 < 𝐿; 𝑖 ≠ 𝑗

• L corresponds to the read length

• No read of length at least L can map to both segments
– Ignoring sequencing errors and paralogs for now!
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Yanagi’s Approach

• Generating Segments:
– Naïve Approach

– ~30% of exons in UCSC hg38 are shorter than 100bp
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Yanagi’s Approach

• Generating Segments:
– Yanagi’s Approach
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Yanagi’s Approach

• Segments Graph
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Yanagi-based
Quantification Workflow
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Segments Analysis
Experiments



Segments Analysis

• Segments Length
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Segments Analysis

• Number of Segments
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Differential Exon Skipping
Use Case: Alt. Splicing Quantification



Differential Exon Skipping

• Synthetic Data:[5]

– 2 conditions, 3 replicas each.

– Simulated reads are based on real RNA-Seq data.

– For 1000 genes with at least two transcripts.

– Transcription levels of the most abundant two transcripts are switched 
across conditions.

• Differential Analysis:
– Exon Skipping events.

– Linear Model based on the segment counts.

– Using Limma-Voom.
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Differential Exon Skipping

• ROC plots: 
– using RapMap for alignment
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Aligning Over Genomic Variants for WGS

Use Case: Linearized Population Reference Graph



Background

• Several databases of Genomic Variants
– Rapidly-growing, public archives.

• E.g. IPD-IMGT/HLA Database currently has 17,344 allele sequences.
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Background

• In principle, Graphs are reasonable representation.
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Figure from HISAT-genotype’s poster



Yanagi + Genomic Variants

• Project Variants Graphs into Splice Graphs.
– Start from Multi-Sequence Alignment (MSA) of gene alleles
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4 alleles (A1, A2, A3, A4)
( - ) same as the first allele

( . ) indicate indels



Yanagi + Genomic Variants

• Preliminary Results: Number of Aligned Reads
– Simulated reads from 6 HLA genes
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Dataset
Total 
Reads

HISAT-
genotype

bwa-mem RapMap

(WG Graph) Ref Ref+Segs Ref Ref+Segs

ClassIEasy 6,000 5,900 6,000 6,000 4,163 5,990

ClassIHard 6,000 5,966 5,797 6,000 3,553 5,990

ClassIIHard 14,000 13,844 12,232 13,997 7,628 13,975



Summary

• Yanagi perform a transcriptome segmentation into L-disjoint segments.

• Introduces fine-grained counts as statistics for DE analysis.

• Flexible approach that can be used in different use cases:
– Alternative Splicing Quantification

– Variant Calling
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Future Extensions

• Further Analysis, e.g.
– Experiments on Real Data

– Comparison with other tools, e.g. SUPPA2 for AS 

– Detailed analysis on multi-mapped reads

• Discovering unannotated transcripts

• Handling paralogs and intersecting genes

• Handling complex repeats and structural variants
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Questions?

Thank you!


