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Big Data in Genomics

University of Maryland

• Genomic Analysis is a typical Big Data

• Bioinformatics Challenges:
– Develop faster pipelines

– Lightweight and efficient

– Interpretability and Accuracy



RNA-seq & Transcriptomics

University of Maryland
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Overview

University of Maryland

• Introduce a graph segmentation approach
– Implemented in Yanagi, an efficient tool for transcriptome 

segmentation

• Show case of using Yanagi in:
– RNA-seq down stream analysis in the three resolutions

• Gene-level Analysis

• Transcript-level Analysis

• Alternative Splicing Analysis

– Building population reference genomes for WGS

High Resolution

Low Resolution



Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification
Transcriptome Segmentation

Yanagi on Github: 
https://github.com/mgunady/yanagi



Yanagi?

University of Maryland

Jellyfish

Yanagi



RNA-seq example

University of Maryland

• For some gene with 5 exons
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RNA-seq example

University of Maryland

• For some gene with 5 exons
– Has 3 possible isoforms

– 95% of human genes with multiple exons undergo
Alternative Splicing (Jorge Vaquero-Garcia et al. 2016)

• Challenges aligning over the transcriptome:
– Ambiguity due to multi-mapped reads

• Usually resolved using probabilistic models like EM

– Local splicing variations may lead to a combinatorial 
number of transcripts (Haas B.J. et al. 2003)

• Standard Annotations list only a minimal subset

– Short-read sequencing does not provide information 
for correlation between distant splicing events 
(Hagen Tilgner et al. 2015)



Yanagi’s Approach

• Our Vision:
– Eliminate multi-mapping trivially caused by the significant share of 

genomic regions.

– Building sufficient statistics describing individual splicing events.
• Independently from the estimation of transcript abundances.

– Utilize the graph representation of the transcriptome.
• Without building a special graph-based aligners.

University of Maryland



Yanagi’s Approach

• Idea Overview:
– Segment the transcriptome into a set of disjoint regions.

– Without losing any possible transcriptome sub-sequences.

• I.e. Linearizing the splice graph

– Then use the generated segments as a reference instead of the 
transcriptome.

University of Maryland



Yanagi’s Approach

University of Maryland

• Starting from the Splice Graph

• Segments are L-Disjoint
𝑤𝑖𝑑𝑡ℎ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑠𝑒𝑔𝑖 , 𝑠𝑒𝑔𝑗 < 𝐿; 𝑖 ≠ 𝑗

• L corresponds to the read length

• No read of length at least L can map to two segments

– Ignoring sequencing errors and paralogs for now!



Yanagi’s Approach

University of Maryland

• Segmentation Algorithm
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Yanagi-based Workflow

University of Maryland

• Segmentation Algorithm



Segments Analysis
Experiments

Yanagi on Github: 
https://github.com/mgunady/yanagi



Segments Analysis

• Segments vs. Transcripts

University of Maryland



Segments Analysis

• Impact on number of multi-mapped reads (40M reads of length 101)

University of Maryland

multi-mappings (transcriptome)

un-mappings (transcriptome)



Use Case: Alt. Splicing Quantification

Yanagi on Github: 
https://github.com/mgunady/yanagi



University of Maryland

• Two directions:
1. Counting-based Approaches:

• E.g. rMATS, MAJIQ, DEXSeq

• Calculates PSI values from local read counts

• Requires mapping over the genome

• Generally Slow

2. Transcript-based Approaches:
• E.g. SUPPA, DiffSplice, CuffDiff

• Calculates PSI values based on transcripts estimated abundances

• Can utilize fast and lightweight kmer aligners (e.g. SUPPA)

• Can be several folds faster

• Depends on the accuracy of estimated transcripts abundances

• Issues handling coverage biases  

SUPPA: https://github.com/comprna/SUPPA

Alternative Splicing Analysis

https://github.com/comprna/SUPPA


University of Maryland

• Segment-based PSI values:

For event 𝑒 in sample 𝑥:

Segment-based
Alternative Splicing Analysis



Segment-based
Alternative Splicing Analysis

• Synthetic Data: (Charlotte Soneson et al. 2016)

– 2 conditions, 3 replicas each.

– Simulated reads are based on real RNA-Seq data.

– For 1000 genes with at least two transcripts.

– Transcription levels of the most abundant two transcripts are switched 
across conditions.

• Differential Analysis:
– 5 Events Types (SE, MX, A3, A5, RI)

– Simple Linear Model (Using Limma-Voom)

– However, more complex model can be used

University of Maryland



University of Maryland

Segment-based
Alternative Splicing Analysis

• Segment-based PSI values:



University of Maryland

Segment-based
Alternative Splicing Analysis

• Differential Analysis



University of Maryland

Segment-based
Gene Visualization



University of Maryland

RNA-seq Summary

• Yanagi perform a transcriptome segmentation into L-disjoint segments.

• Enable fast and lightweight pseudo-alignment tools to provide fine-
grained statistics in the resolution of local splicing.

• Segment-based AS analysis can achieve count-based approaches accuracy 
with the speed of transcript-based approaches.



Aligning Over Genomic Variants for WGS
Building population reference genome

Yanagi on Github: 
https://github.com/mgunady/yanagi



Background

University of Maryland

• Whole Genome Population Reference
– A challenge handling population diversity

1000 Genomes Project



Background

University of Maryland

• Some genes are highly polymorphic
– E.g. Human Leukocyte Antigen (HLA) system

– Regulates the human immune system, so of significant medical importance 

• Alignment with reference only, can miss significant amount of reads 
originating from HLA genes



Background

University of Maryland

• Projects providing catalogs of known genomic variants, e.g.
– IPD-IMGT/HLA Database

– 1000 Genomes Project

• IPD-IMGT/HLA Database
– Rapidly growing, provides 18,363 allele sequences for public access



Background

University of Maryland

• Two directions to incorporate alleles into alignment

Alt-aware Aligners
e.g. BWA-MEM

Pros:
• Literature and tools well established
• Relatively fast and less expensive

Cons:
• Duplicates major portion of sequences
• Causes ambiguity assigning multi-mapped reads
• No homology relationship between sequences

Graph Aligners
e.g. HISAT-genotype

Pros:
• Shared sequences represented once
• Preserves structure of the alternative alleles

Cons:
• Graph-based aligners are not mature yet
• Current implementations are computationally expensive



Population Graph Segmentation

Segment-based Population Genome Reference

Yanagi on Github: 
https://github.com/mgunady/yanagi



Our Approach
Population Graph Segmentation

University of Maryland

Question: 

Do we need a Whole-Genome (WG) Population Reference Graph?
Can we preserve graph’s advantages while maintaining linear approaches speed and 

flexibility?



Our Approach
Population Graph Segmentation

University of Maryland

• Method Outlines:
1. Build population genome graph

2. Linearize the graph into set of segments

3. Use segments as reference for alignment



Our Approach
Population Graph Segmentation

University of Maryland

1. Build population genome graph

`



Our Approach
Population Graph Segmentation

University of Maryland

2. Linearize the graph into set of segments
– Adapt our transcriptome segmentation approach (Yanagi)

• Generates maximal L-disjoint segments



Our Approach
Population Graph Segmentation

University of Maryland

3. Use gene segments as its reference for alignment



HLA Class I and Class II genes

Experiments

Yanagi on Github: 
https://github.com/mgunady/yanagi



HLA Reads Extraction

• Simulated Data
– 10 Simulated samples of combining reads simulated from 

• 6 HLA genes (-A, -B, -C) and (-DQA1, -DQB1, -DRB1)

• Non HLA genes

– Per sample, per HLA gene: Two randomly selected alleles were used to 
simulated reads

• Paired-End

• Length 150bp

• Average coverage of x40

– A sample contains ~56k HLA reads and 2M non-HLA reads

University of Maryland



HLA Reads Extraction

• Simulation Results

– 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐻𝐿𝐴 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝐻𝐿𝐴 𝑔𝑒𝑛𝑒𝑠

𝐴𝑙𝑙 𝐻𝐿𝐴 𝑟𝑒𝑎𝑑𝑠

University of Maryland

Kmer-based 
pseudo aligner

Alt-aware 
linear aligner

Graph 
aligner



HLA Reads Extraction

• Real Data Running Time
– Sample NA12878

– (24 threads on Dual E5-2690 2.90GHz)

University of Maryland

HISAT-genotype
(Graph)

BWA-MEM
(Ref+Segs)

RapMap
(Ref+Segs)

Running Time 20 hours 8 hours 2 hours



Summary

• We introduced an approach of linearizing population haplotypes graph 
using Yanagi's segmentation.

• Linear aligners with allele segments can achieve graph aligners’ 
performance, while avoiding the expensive computational overhead of 
aligning over graphs.

• Yanagi’s approach opens the door for bridging the gap between linear and 
graph representations of catalogs of sequences in different domains.

University of Maryland



Proposed Work

1. Machine Learning models that use and predict segments expression
– Predict tissue-specific expression using segment counts as targets in 

a deep network model based on sequence and chromatin measurements.

– Use segment counts obtained from single-cell data to perform 
trajectory inference 

2. Segment-based Transcripts Abundance Estimation
– Estimate transcript abundances from segment counts

– Challenges handling sources of bias

– Use segment counts to discover unannotated junctions

3. Interactive Segment-based Gene Visualization

4. Segments Representation of Catalogs of Genomes

University of Maryland
(Michael Love et al. 2016)



Thank you!

Yanagi on Github: 
https://github.com/mgunady/yanagi



HLA Segments Analysis

• HLA Segments (L=150) 

University of Maryland

A B C DQA1 DQB1 DRB1 Total

Num. of 16-mers 19,115 18,865 20,691 19,274 26,830 53,076 148,764

New 16-mers (%) 45.7% 49.8% 49.6% 19.2% 40.7% 27.9% 36.6%

Class I genes Class II genes


