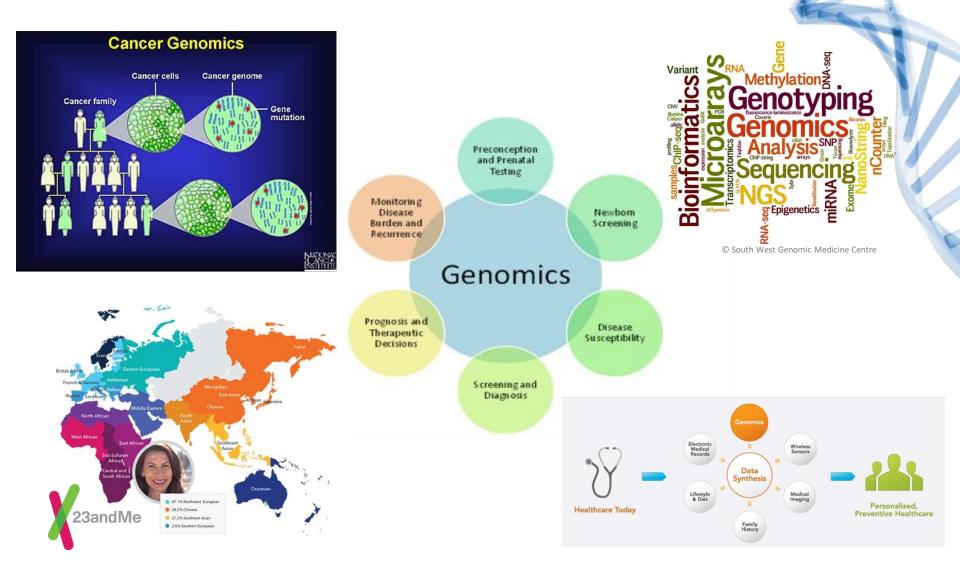
Applications of Graph Segmentation Algorithms for Quantitative Genomic Analysis

Mohamed Gunady PhD Preliminary Exam Talk

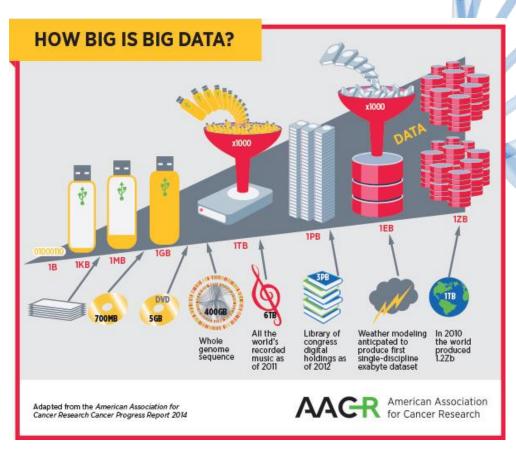
The Age of Genomics



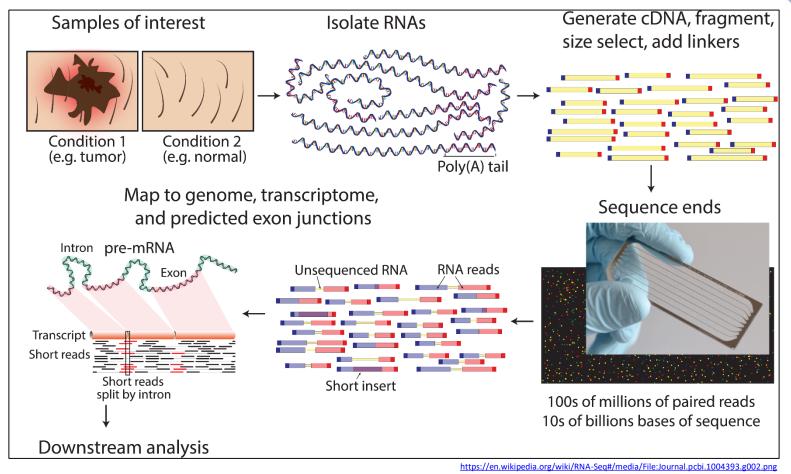
Big Data in Genomics

• Genomic Analysis is a typical Big Data

- Bioinformatics Challenges:
 - Develop faster pipelines
 - Lightweight and efficient
 - Interpretability and Accuracy



RNA-seq & Transcriptomics



CBCB CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

Overview

- Introduce a graph segmentation approach
 - Implemented in Yanagi, an efficient tool for transcriptome segmentation
- Show case of using Yanagi in:
 - RNA-seq down stream analysis in the three resolutions

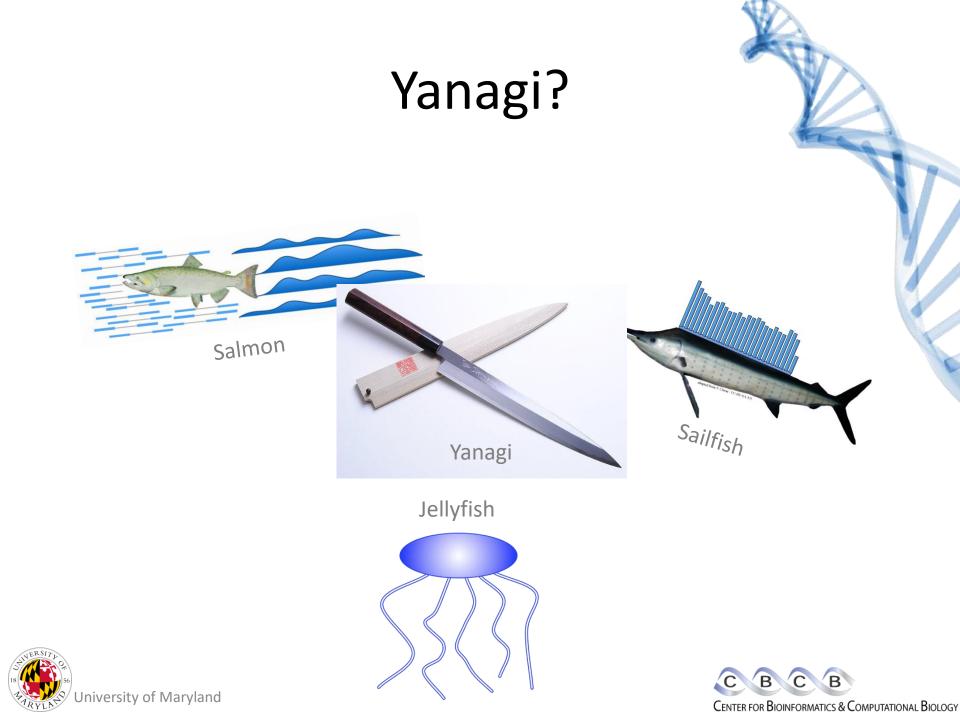
Building population reference genomes for WGS

Transcriptome Segmentation Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

В

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

Yanagi on Github: https://github.com/mgunady/yanagi



RNA-seq example

• For some gene with 5 exons

RNA-seq example

• For some gene with 5 exons

- Has 3 possible isoforms
- 95% of human genes with multiple exons undergo
 Alternative Splicing (*Jorge Vaquero-Garcia et al. 2016*)

Exons –	
	L
	Reads

B

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

RNA-seq example

• For some gene with 5 exons

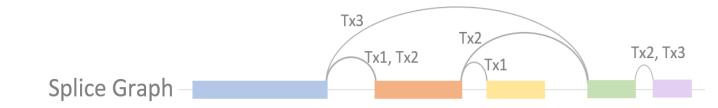
- Has 3 possible isoforms
- 95% of human genes with multiple exons undergo Alternative Splicing (*Jorge Vaquero-Garcia et al. 2016*)
- Challenges aligning over the transcriptome:
 - Ambiguity due to multi-mapped reads
 - Usually resolved using probabilistic models like EM
 - Local splicing variations may lead to a combinatorial number of transcripts (*Haas B.J. et al. 2003*)
 - Standard Annotations list only a minimal subset
 - Short-read sequencing does not provide information for correlation between distant splicing events (*Hagen Tilgner et al. 2015*)

_L

- Our Vision:
 - Eliminate multi-mapping trivially caused by the significant share of genomic regions.
 - Building sufficient statistics describing individual splicing events.
 - Independently from the estimation of transcript abundances.
 - Utilize the graph representation of the transcriptome.
 - Without building a special graph-based aligners.

- Idea Overview:
 - Segment the transcriptome into a set of disjoint regions.
 - Without losing any possible transcriptome sub-sequences.
 - I.e. Linearizing the splice graph
 - Then use the generated segments as a reference instead of the transcriptome.

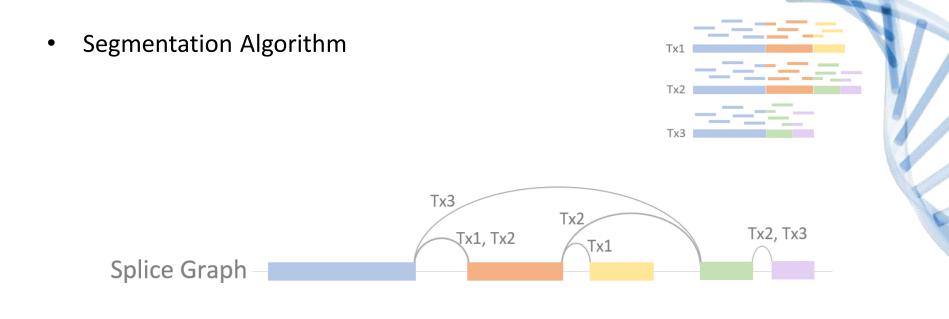
- Starting from the Splice Graph
- Segments are L-Disjoint width[overlap(seg_i, seg_j)] < L; i ≠ j
- L corresponds to the read length
- No read of length at least *L* can map to two segments
 - Ignoring sequencing errors and paralogs for now!



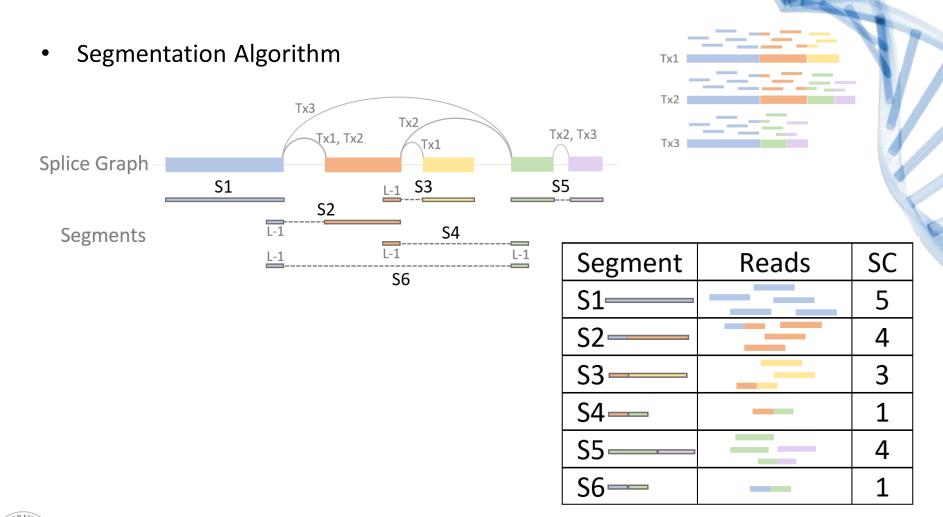
Tx1

Tx2

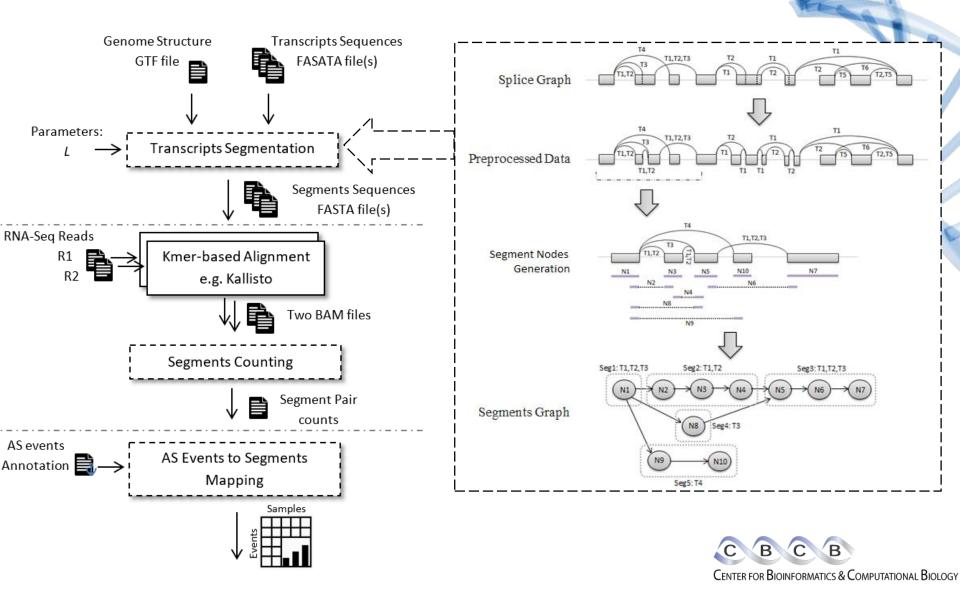
Tx3



Segments



Yanagi-based Workflow

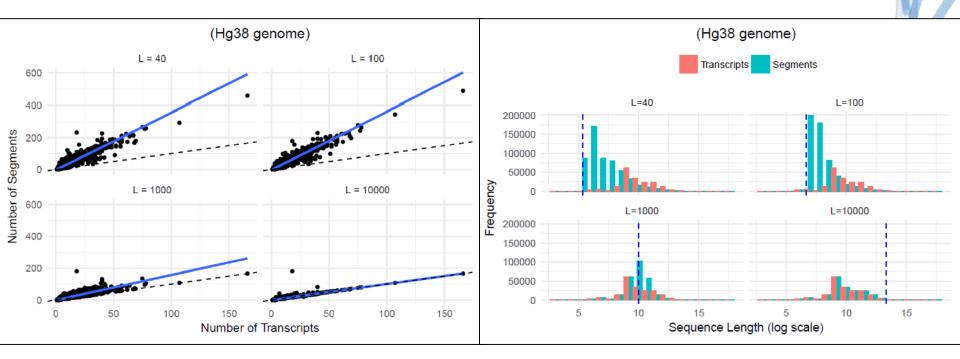


Experiments Segments Analysis

Yanagi on Github: https://github.com/mgunady/yanagi

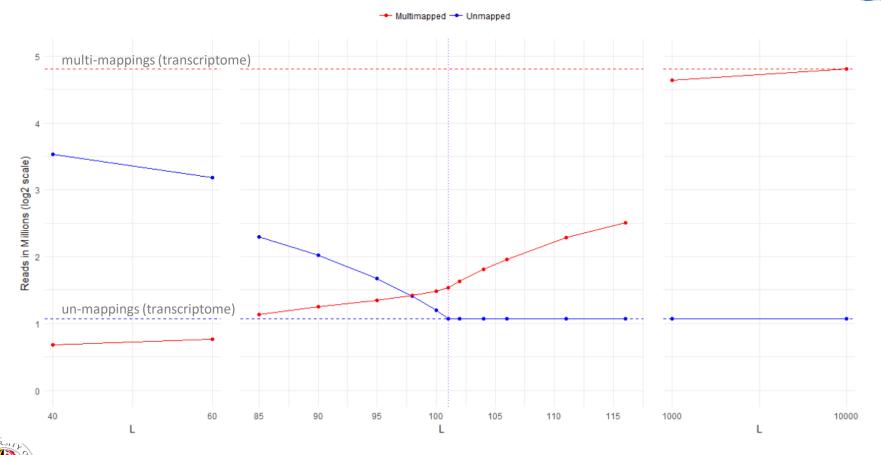
Segments Analysis

• Segments vs. Transcripts



Segments Analysis

• Impact on number of multi-mapped reads (40M reads of length 101)



🛇 University of Maryland

Use Case: Alt. Splicing Quantification

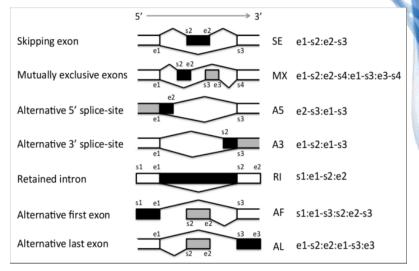
Yanagi on Github: https://github.com/mgunady/yanagi

CBCB CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

Alternative Splicing Analysis

• Two directions:

- 1. Counting-based Approaches:
 - E.g. rMATS, MAJIQ, DEXSeq
 - Calculates PSI values from local read counts
 - Requires mapping over the genome
 - Generally Slow



- 2. Transcript-based Approaches:
 - E.g. SUPPA, DiffSplice, CuffDiff
 - Calculates PSI values based on transcripts estimated abundances
 - Can utilize fast and lightweight kmer aligners (e.g. SUPPA)
 - Can be several folds faster
 - Depends on the accuracy of estimated transcripts abundances
 - Issues handling coverage biases

SUPPA: https://github.com/comprna/SUPPA

• Segment-based PSI values:

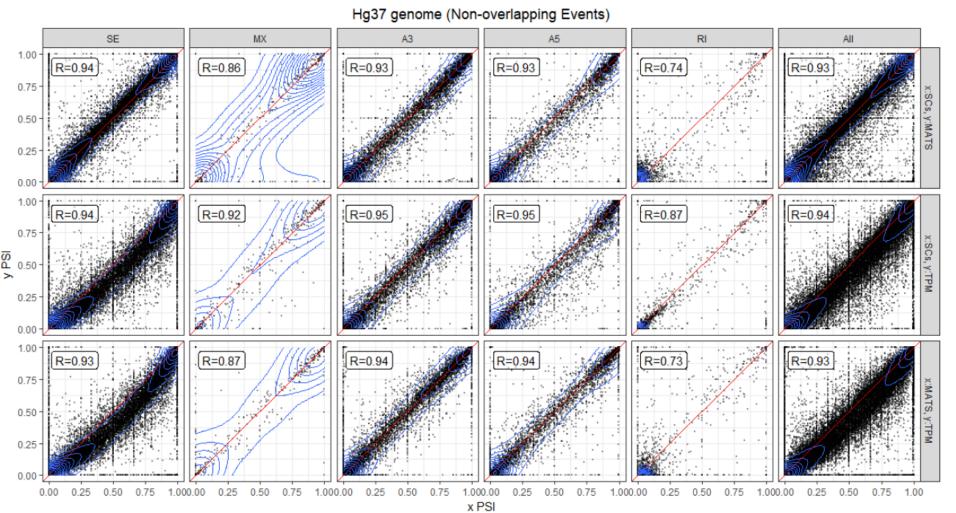
For event *e* in sample *x*:

$$PSI(e, x) = \frac{\sum_{s \in S_i(e)} SC(s, x)}{\sum_{s \in S_i(e) \cup S_e(e)} SC(s, x)}$$

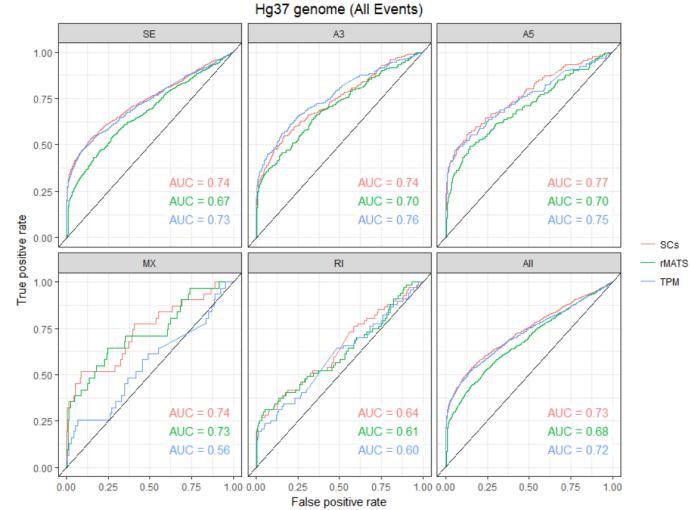
where $S_i(e)$ and $S_e(e)$ are inclusion and exclusion segments, respectively, and SC(s, x) is the segment count

- Synthetic Data: (Charlotte Soneson et al. 2016)
 - 2 conditions, 3 replicas each.
 - Simulated reads are based on real RNA-Seq data.
 - For 1000 genes with at least two transcripts.
 - Transcription levels of the most abundant two transcripts are switched across conditions.
- Differential Analysis:
 - 5 Events Types (SE, MX, A3, A5, RI)
 - Simple Linear Model (Using Limma-Voom)
 - However, more complex model can be used

• Segment-based PSI values:

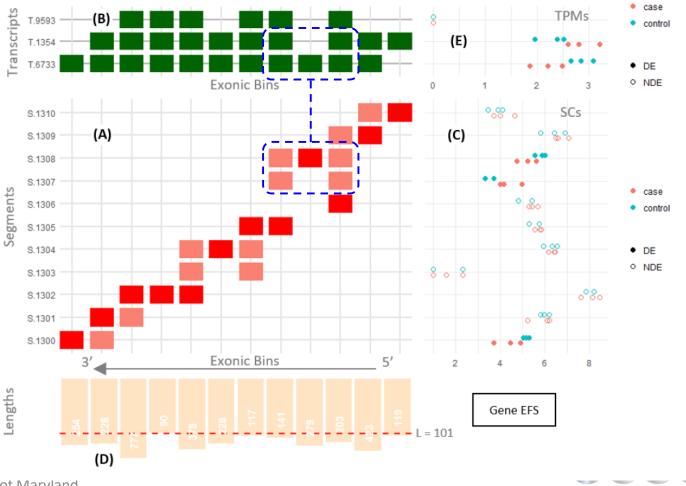


• Differential Analysis



& COMPUTATIONAL BIOLOGY

Segment-based Gene Visualization



CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

RNA-seq Summary

• Yanagi perform a transcriptome segmentation into *L*-disjoint segments.

• Enable fast and lightweight pseudo-alignment tools to provide finegrained statistics in the resolution of local splicing.

• Segment-based AS analysis can achieve count-based approaches accuracy with the speed of transcript-based approaches.

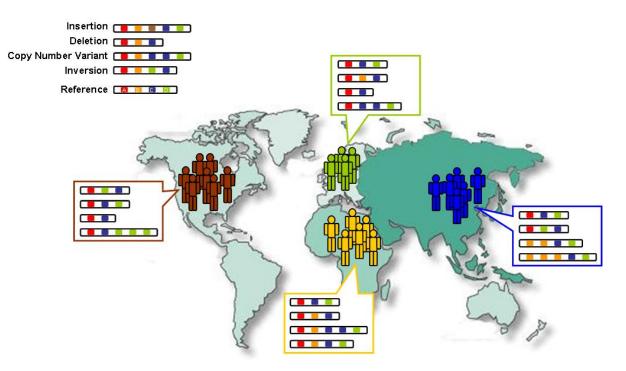
Building population reference genome

Aligning Over Genomic Variants for WGS

Yanagi on Github: https://github.com/mgunady/yanagi

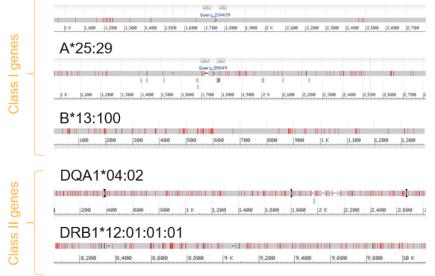
illumina

- Whole Genome Population Reference
 - A challenge handling population diversity

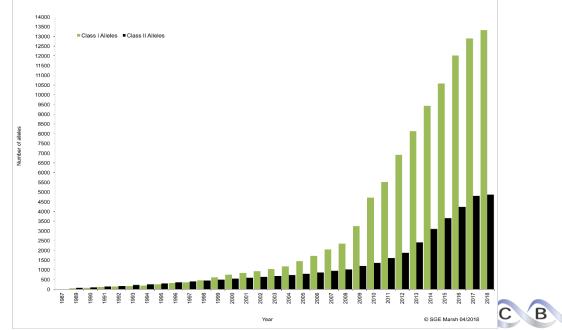


1000 Genomes Project

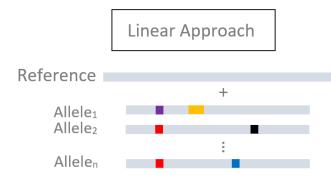
- Some genes are highly polymorphic
 - E.g. Human Leukocyte Antigen (HLA) system
 - Regulates the human immune system, so of significant medical importance
- Alignment with reference only, can miss significant amount of reads originating from HLA genes
 A*01:01:01:01



- Projects providing catalogs of known genomic variants, e.g.
 - IPD-IMGT/HLA Database
 - 1000 Genomes Project
- IPD-IMGT/HLA Database
 - Rapidly growing, provides 18,363 allele sequences for public access



Two directions to incorporate alleles into alignment



Alt-aware Aligners

e.g. BWA-MEM

Pros:

- Literature and tools well established
- Relatively fast and less expensive

Cons:

- Duplicates major portion of sequences
- Causes ambiguity assigning multi-mapped reads
- No homology relationship between sequences

Graph Aligners

e.g. HISAT-genotype

Pros:

- Shared sequences represented once
- Preserves structure of the alternative alleles

Cons:

- Graph-based aligners are not mature yet
- Current implementations are computationally expensive

Segment-based Population Genome Reference

Population Graph Segmentation

Yanagi on Github: https://github.com/mgunady/yanagi

illumina

Population Graph Segmentation

Question:

Do we need a Whole-Genome (WG) Population Reference Graph?

Can we preserve graph's advantages while maintaining linear approaches speed and flexibility?

Population Graph Segmentation

- Method Outlines:
 - 1. Build population genome graph
 - 2. Linearize the graph into set of segments
 - 3. Use segments as reference for alignment

Population Graph Segmentation

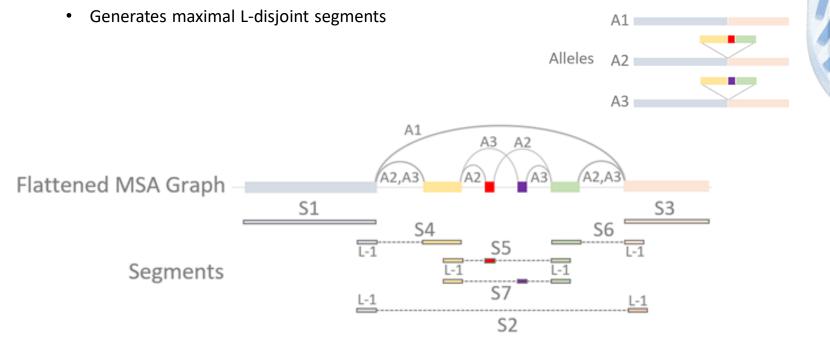
1. Build population genome graph

(A)	A1:	ATC	GAG	GTC	ACC		ATC	GAG	G	.TC	ACC
(A)	A2:	ATG	ACT	GAG	CTC	ACC	G	ACT	-AG	C	
Alleles MSA	A3:	ATC	GAG	GTG	TCC	TT			-TG		CTT
	A4:	ATC	GAG	GCT	CAC	C				C	

Population Graph Segmentation

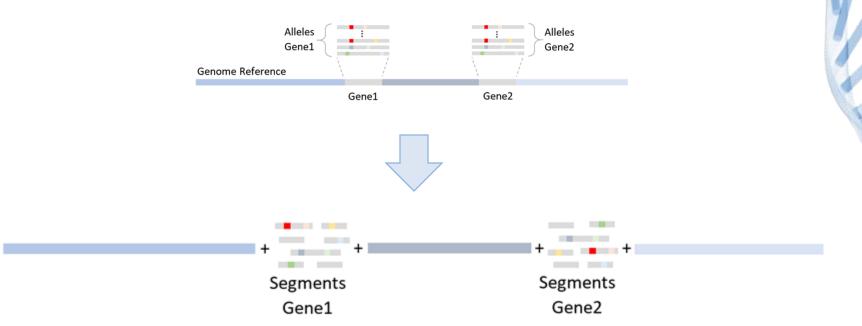
2. Linearize the graph into set of segments

Adapt our transcriptome segmentation approach (Yanagi)



Population Graph Segmentation

3. Use gene segments as its reference for alignment



Experiments

HLA Class I and Class II genes

Yanagi on Github: https://github.com/mgunady/yanagi

illumina

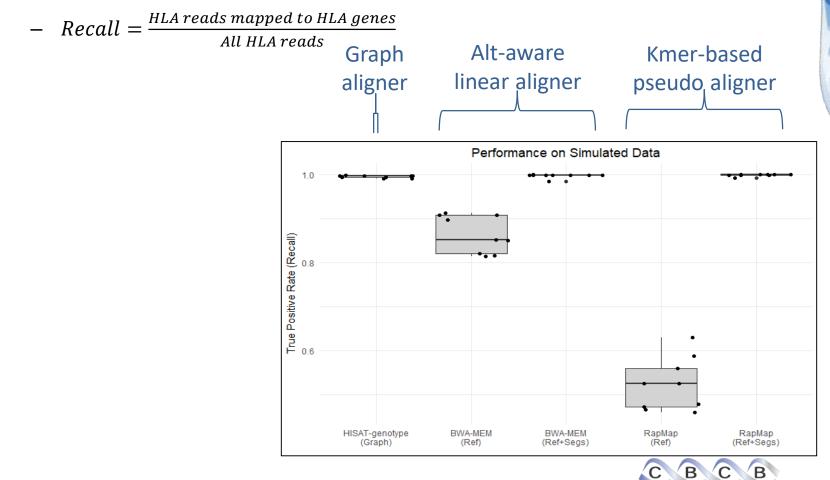
HLA Reads Extraction

Simulated Data

- 10 Simulated samples of combining reads simulated from
 - 6 HLA genes (-A, -B, -C) and (-DQA1, -DQB1, -DRB1)
 - Non HLA genes
- Per sample, per HLA gene: Two randomly selected alleles were used to simulated reads
 - Paired-End
 - Length 150bp
 - Average coverage of x40
- A sample contains ~56k HLA reads and 2M non-HLA reads

HLA Reads Extraction

• Simulation Results



CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY

 $^{\vee}$ University of Maryland

HLA Reads Extraction

- Real Data Running Time
 - Sample NA12878
 - (24 threads on Dual E5-2690 2.90GHz)

	HISAT-genotype	BWA-MEM	RapMap
	(Graph)	(Ref+Segs)	(Ref+Segs)
Running Time	20 hours	8 hours	2 hours

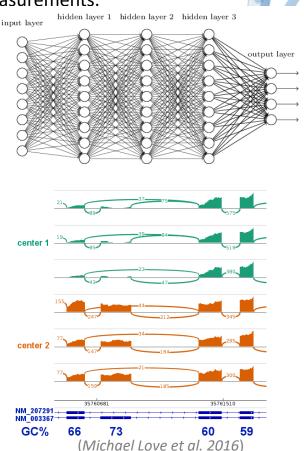
Summary

• We introduced an approach of linearizing population haplotypes graph using Yanagi's segmentation.

- Linear aligners with allele segments can achieve graph aligners' performance, while avoiding the expensive computational overhead of aligning over graphs.
- Yanagi's approach opens the door for bridging the gap between linear and graph representations of catalogs of sequences in different domains.

Proposed Work

- 1. Machine Learning models that use and predict segments expression
 - Predict tissue-specific expression using segment counts as targets in a deep network model based on sequence and chromatin measurements.
 - Use segment counts obtained from single-cell data to perform trajectory inference
- 2. Segment-based Transcripts Abundance Estimation
 - Estimate transcript abundances from segment counts
 - Challenges handling sources of bias
 - Use segment counts to discover unannotated junctions
- 3. Interactive Segment-based Gene Visualization
- 4. Segments Representation of Catalogs of Genomes



Thank you!

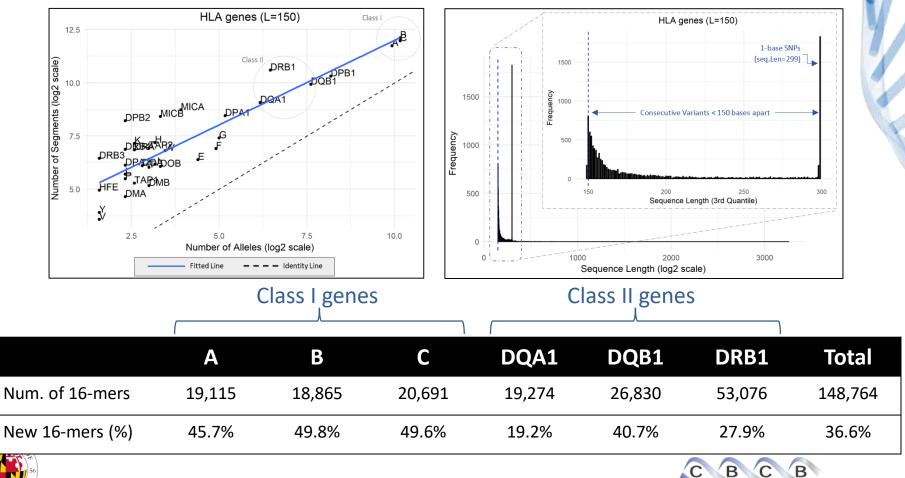
illumına[,]

Yanagi on Github: https://github.com/mgunady/yanagi

National Institutes of Health

HLA Segments Analysis

• HLA Segments (L=150)



[/] University of Maryland

CENTER FOR BIOINFORMATICS & COMPUTATIONAL BIOLOGY